12 research outputs found

    Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm

    Get PDF
    Purpose Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease with often unrecognized inherited forms. We sought to identify novel pathogenic variants associated with autosomal dominant inheritance of TAAD. Methods We analyzed exome sequencing data from 35 French TAAD families and performed next-generation sequencing capture panel of genes in 1114 unrelated TAAD patients. Functional effects of pathogenic variants identified were validated in cell, tissue, and mouse models. Results We identified five functional variants inTHSD4of which two heterozygous variants lead to a premature termination codon.THSD4encodes ADAMTSL6 (member of the ADAMTS/L superfamily), a microfibril-associated protein that promotes fibrillin-1 matrix assembly. TheTHSD4variants studied lead to haploinsufficiency or impaired assembly of fibrillin-1 microfibrils.Thsd4(+/-)mice showed progressive dilation of the thoracic aorta. Histologic examination of aortic samples from a patient carrying aTHSD4variant and fromThsd4(+/-)mice, revealed typical medial degeneration and diffuse disruption of extracellular matrix. Conclusion These findings highlight the role of ADAMTSL6 in aortic physiology and TAAD pathogenesis. They will improve TAAD management and help develop new targeted therapies

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Familial hypercholesterolemia : research of new genes and study of polygenic forms

    No full text
    L’hypercholestérolémie familiale à transmission autosomique dominante (ADH), caractérisée par une élévation des taux plasmatiques en cholestérol total et LDL-C, est due à des altérations de 4 gènes : LDLR, APOB, PCSK9 et APOE. L’objectif principal de cette thèse est d’identifier de nouveaux gènes impliqués dans l’ADH. L’identification de nouveaux gènes sera suivie de l’étude des mécanismes physiopathologiques liés à leurs mutations. Un deuxième objectif est de calculer le score génétique (GRS) chez tous les individus appartenant à 5 familles où une mutation FH a déjà été identifiée afin de déterminer si une forme polygénique expliquerait les cas de phénocopies observés. Parallèlement, nous avons mené une étude dans la population libanaise caractérisée par une fréquence élevée de dyslipidémie et qui représente un outil d’étude remarquable au plan génétique du fait de l’existence d’une forte homogénéité du fond génétique.Ce projet de recherche a permis de révéler un gène candidat pouvant être impliqué dans l’ADH : LRP6. De plus il a permis de remettre en question le rôle du récepteur LRP6 jusqu’à présent considéré comme un protagoniste important dans l’internalisation des LDL. Des études supplémentaires sont encore nécessaires afin de confirmer ou non l’implication de ce gène dans l’ADH et de déterminer son rôle exact dans le métabolisme du cholestérol. Concernant le score polygénique, nous avons montré que le GRS ne peut pas être considéré comme un outil de diagnostic pour différencier les sujets avec une hypercholestérolémie monogénique de ceux avec une hypercholestérolémie polygénique et ne peut pas être utilisé pour expliquer les cas de phénocopiesAtherosclerosis and its cardiovascular complications are the leading causes of morbidity and mortality in industrialized countries. Hypercholesterolemia is one of the major cardiovascular risk factors and it affects one in 20 subjects in the general population. Autosomal dominant hypercholesterolemia (ADH), characterized by elevated plasma total cholesterol and LDL-C levels, is due to alterations in 4 genes: LDLR, APOB, PCSK9 and APOE. The fundamental work of Brown and Goldstein revealed the important role of the mutations in the LDLR gene in ADH and contributed to the development of a major class of cholesterol-lowering drugs: statins. Similarly, the discovery by Abifadel et al. in 2003 of the first hypercholesterolemic mutations of PCSK9 was the starting point of an adventure which resulted, 12 years later, in the development of a new class of cholesterol-lowering drugs: anti-PCSK9 antibodies. The main objective of this thesis is to discover new genes, major genetic factors and modifiers involved in ADH. The identification of new genes will be followed by the study of the pathophysiological mechanisms linked to their mutations. A second objective of this work is to calculate the genetic risk score (GRS) in all individuals belonging to 5 families where a mutation responsible of the hypercholesterolemic phenotype has been already identified in order to determine whether a polygenic form would explain the phenocopies observed in these families. In parallel to these two projects, we conducted a study in the Lebanese population which is characterized by a high incidence of dyslipidemia. In this population, it is interesting to conduct genetic studies because of the existence of a limited number of sub-populations that constitute "genetic isolates" with a high homogeneity of their genetic background, making it easier to study many hereditary diseases such as familial hypercholesterolemia. The results obtained in this project revealed a candidate gene that could be involved in ADH: LRP6. Moreover, it allowed us to question about the exact role of the LRP6 receptor until now considered as an important protagonist in the internalization of LDL particles. Further studies are still needed to confirm whether or not this gene is involved in ADH and to determine its exact role in cholesterol metabolism. Concerning the genetic score, we have shown that the GRS does not seem to be a reliable diagnostic tool to identify polygenic hypercholesterolemia at the individual level. The 6-SNP score did not give us a clear answer and thus we cannot use the GRS to identify phenocopies within ADH familie

    Whole Exome/Genome Sequencing Joint Analysis of a Family with Oligogenic Familial Hypercholesterolemia

    No full text
    Autosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype

    Proprotein convertase subtilisin / kexin 9 (PCSK9) inhibitors and the future of dyslipidemia therapy: an updated patent review (2011-2015)

    No full text
    <p><b>Introduction:</b> The identification by Abifadel et al. in 2003 of the first mutations of <i>PCSK9</i> was the major breakthrough in the cholesterol field that led to a new therapeutic target. This discovery paved the way to new lipid lowering drugs reducing LDL-cholesterol levels through the inhibition of PCSK9. Two anti-PCSK9 monoclonal antibodies have received FDA and EMA approvals: Alirocumab and Evolocumab.</p> <p><b>Areas covered:</b> This article reviews the different strategies that are pursued to modulate the functional activity of PCSK9 for lowering LDL-cholesterol levels. It also provides a brief overview of the patents related to PCSK9 from 2011 until the end of 2015. This review is addressed to researchers from academia and pharmaceutical companies who are engaged in PCSK9 research/cholesterol regulation. Readers will gain an up-to-date overview of the different strategies that have been investigated to reduce PCSK9, focusing on anti-PCSK9 monoclonal antibodies and the related clinical trials.</p> <p><b>Expert opinion:</b> Anti-PCSK9 antibodies are a new class of lipid lowering drugs with promising results in reducing LDL-cholesterol. Long-term ongoing studies investigating on a large scale the efficacy and safety of the anti-PCSK9 antibodies and their cardiovascular outcomes are eagerly awaited.</p

    Circulating PCSK9 Linked to Dyslipidemia in Lebanese Schoolchildren

    No full text
    In adults, elevated levels of circulating Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) have been associated with increased Low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and worse cardiovascular outcomes. However, few studies analyzed the relation between PCSK9 and lipid parameters in pediatric populations. The aim of our study is to evaluate the distribution and the correlation of serum PCSK9 levels with lipid parameters in a sample of Lebanese school children. Using an immunofluorescence assay, we measured serum PCSK9 levels in 681 school children recruited from ten public and private Lebanese schools. We analyzed the association between PCSK9 and age, sex, Body Mass Index (BMI), and lipid parameters (total cholesterol (TC), LDL-C, TG, High-density lipoprotein cholesterol (HDL-C), non-HDL-C, and lipoprotein (a) (Lp(a)). Serum PCSK9 levels were significantly correlated with TC, LDL-C, and non-HDL-C (p value p values = 0.0012, 0.0002, 0.001, respectively). No significant gender differences in PCSK9 were found. In addition, no significant associations between PCSK9 and both age and BMI percentiles were observed. In girls, no difference in PCSK9 values was observed according to menarche while in boys, testosterone levels were not significantly associated with PCSK9. Serum PCSK9 levels were significantly correlated with TC, LDL-C, and non-HDL-C levels. Further studies are needed to find if PCSK9 measurements have an additional value to predict future cardiovascular outcomes in pediatric populations

    Usefulness of the genetic risk score to identify phenocopies in families with familial hypercholesterolemia?

    No full text
    International audienceFamilial hypercholesterolemia (FH) is caused by mutations in LDLR (low-density lipoprotein receptor), APOB (apolipoprotein B), PCSK9 (proprotein convertase subtilisin/kexin type 9), or APOE (apolipoprotein E) genes in approximately 80% of the cases. Polygenic forms of hypercholesterolemia may be present among patients clinically diagnosed with FH but with no identified mutation (FH mutation-negative (FH/M-)). To address whether polygenic forms may explain phenocopies in FH families, we calculated a 6-single-nucleotide polymorphism (SNP) genetic risk score (GRS) in all members from five French FH families where a mutation was identified (FH/M+) as well as some phenocopies (FH/M-). In two families, three FH/M- patients present a high GRS suggesting a polygenic hypercholesterolemia for these phenocopies. However, a high GRS is also observed in nine FH/M+ patients and in four unaffected relatives from three families. These observations indicate that the GRS does not seem to be a good diagnostic tool at the individual level. Nevertheless, the GRS seems to be a contributor of the severity of hypercholesterolemia since patients who cumulate a mutation and a high GRS exhibit higher low-density lipoprotein cholesterol levels when compared to patients with only FH (p = 0.054) or only polygenic hypercholesterolemia (p = 0.0039). In conclusion, the GRS can be used as a marker of the severity of hypercholesterolemia but does not seem to be a reliable tool to distinguish phenocopies within FH families

    New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia

    Get PDF
    International audienceAutosomal dominant hypercholesterolemia (ADH) is characterized by elevated LDL-C levels leading to coronary heart disease. Four genes are implicated in ADH: LDLR, APOB, PCSK9 and APOE. Our aim was to identify new mutations in known genes, or in new genes implicated in ADH. Thirteen French families with ADH were recruited and studied by exome sequencing after exclusion, in their probands, of mutations in the LDLR, PCSK9 and APOE genes and fragments of exons 26 and 29 of APOB gene. We identified in one family a p.Arg50Gln mutation in the APOB gene, which occurs in a region not usually associated with ADH. Segregation and in-silico analysis suggested that this mutation is disease causing in the family. We identified in another family with the p.Ala3396Thr mutation of APOB, one patient with a severe phenotype carrying also a mutation in PCSK9: p.Arg96Cys. This is the first compound heterozygote reported with a mutation in APOB and PCSK9. Functional studies proved that the p.Arg96Cys mutation leads to increased LDL receptor degradation. This work shows that Next-Generation Sequencing (exome, genome or targeted sequencing) are powerful tools to find new mutations and identify compound heterozygotes, which will lead to better diagnosis and treatment of ADH

    Identification of a variant in apob gene as a major cause of hypobetalipoproteinemia in lebanese families

    No full text
    International audienceFamilial hypobetalipoproteinemia (FHBL) is a codominant genetic disorder characterized by reduced plasma levels of low-density lipoprotein cholesterol and apolipoprotein B. To our knowl-edge, no study on FHBL in Lebanon and the Middle East region has been reported. Therefore, we conducted genetic studies in unrelated families and probands of Lebanese origin presenting with FHBL, in order to identify the causes of this disease. We found that 71% of the recruited probands and their affected relatives were heterozygous for the p.(Arg490Trp) variant in the APOB gene. Haplotype analysis showed that these patients presented the same mutant haplotype. Moreover, there was a decrease in plasma levels of PCSK9 in affected individuals compared to the non-affected and a significant positive correlation between circulating PCSK9 and ApoB levels in all studied probands and their family members. Some of the p.(Arg490Trp) carriers suffered from diabetes, hepatic steatosis or neurological problems. In conclusion, the p.(Arg490Trp) pathogenic variant seems a cause of FHBL in patients from Lebanese origin, accounting for approximately 70% of the probands with FHBL presumably as a result of a founder mutation in Lebanon. This study is crucial to guide the early diagnosis, management and prevention of the associated complications of this disease

    Whole Exome/Genome Sequencing Joint Analysis of a Family with Oligogenic Familial Hypercholesterolemia

    No full text
    International audienceAutosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype
    corecore